skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qu, Xi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary We consider peer effect estimation in social network models where some network links are incorrectly measured. We show that if the number or magnitude of mismeasured links does not grow too quickly with the sample size, then standard instrumental variables estimators that ignore these measurement errors remain consistent, and standard asymptotic inference methods remain valid. These results hold even when the link measurement errors are correlated with regressors or with structural errors in the model. Simulations and real data experiments confirm our results in finite samples. These findings imply that researchers can ignore small numbers of mismeasured links in networks. 
    more » « less